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Abstract
It is shown that the Hilbert space corresponding to all the quantum states of the
Landau problem can be split in two different ways: as infinite direct sums of
the finite- and infinite-dimensional representation subspaces of the Lie algebras
su(2) and su(1, 1) with finite- and infinite-fold degeneracies, respectively. For
each of the Hilbert representation subspaces of the Lie algebra su(1, 1), we
construct a suitable linear combination of its bases as the Barut–Girardello
coherent states.

PACS numbers: 03.65.−w, 03.65.Fd, 02.20.Sv

1. Introduction

The physics of charged particles in a magnetic field has been one of the important problems in
quantum mechanics, inspired by condensed matter physics, quantum optics etc. On the other
hand, the variants, generalizations and applications of coherent states have been extensively
studied over the last four decades. A comprehensive review of this development can be found
in [1–4]. Consideration of coherent states for a charged particle is one of the interesting
problems in various fields of physics [5]. Coherent states were considered recently for the
system of a two-dimensional fermion gas in a constant magnetic field [6]. In [7] we constructed
the generalized Kluder–Perelomov [1, 2] and Gazeau–Kluder [8–10] coherent states of Landau
levels using two different representations for the Lie algebra h4. It should be recalled that
the Landau problem [11] is related to the motion of a charged particle on the flat plane xy in
the presence of a constant magnetic field along the z-axis. Here we reorganize the Landau
levels into two different hidden symmetries, namely su(2) and su(1, 1). The representation

0305-4470/04/195203+08$30.00 © 2004 IOP Publishing Ltd Printed in the UK 5203

http://stacks.iop.org/ja/37/5203


5204 H Fakhri

of su(1, 1) by the Landau levels then leads to the construction of the Barut–Girardello [12]
coherent states.

In order to provide the necessary mathematical tools, in this section we explain some
results related to the splitting of all quantum states of the Landau problem [11] in two different
ways into infinite direct sums of the representation spaces of the Heisenberg Lie algebra h4.
In the previous work [7], by introducing the associated Laguerre functions as

L(α,β)
n,m (x) =

(−1)m
√

βα+m+1

�(n−m+1)�(n+α+1)

xα+ m
2 e−βx

(
d

dx

)n−m

(xn+α e−βx) (1)

with β > 0, α > −1, n � 0, 0 � m � n, we showed that the set of three-dimensional
harmonic oscillator quantum states

ψn,m(r) =
( r

2

) 2α+1
2

e− β

8 r2
L(α,β)

n,m

(
r2

4

)
(2)

form an orthonormal set with the same m but with different ns:∫ ∞

0
ψn,m(r)ψn′,m(r) dr = δnn′ . (3)

Also, we constructed the Hilbert space H := span {|n,m〉}n�0,0�m�n from the bases

|n,m〉 = eimϕ

√
2π

ψn,m(r) (4)

with 0 � ϕ < 2π , as quantum states of the Landau problem corresponding to the motion of
a spinless charged particle on a flat surface in the presence of a constant magnetic field β/2
along the z-axis. Using equation (3), it becomes obvious that the bases of the Hilbert space
H with respect to the following inner product constitute an orthonormal set for different ns
and ms:

〈n,m|n′,m′〉 =
∫ 2π

ϕ=0

∫ ∞

r=0

(
eimϕ

√
2π

ψn,m(r)

)∗ (
eim′ϕ
√

2π
ψn′,m′(r)

)
dr dϕ = δnn′δmm′ . (5)

The orthonormality relation (5) imposes the completeness relation in the Hilbert space H as

+∞∑
n=0

n∑
m=0

|n,m〉〈n,m| = IH. (6)

In figure 1 of [7], we schematically showed the bases of the Hilbert space H as the points
(n,m), with 0 � m � n, on a flat plane whose horizontal and vertical axes are labelled with
n and m, respectively.

There we also extracted two classes of generators of the Heisenberg Lie algebra h4 as

L+ = eiϕ

(
∂

∂r
+

i

r

∂

∂ϕ
+

β

4
r − 2α + 1

2r

)

L− = e−iϕ

(
− ∂

∂r
+

i

r

∂

∂ϕ
+

β

4
r − 2α − 1

2r

)
(7)

L3 = −i
∂

∂ϕ
I = 1
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Figure 1. The Landau quantum states lattice (n,m) as the bases of the Hilbert representation
space H.

and

J+ = eiϕ

(
∂

∂r
+

i

r

∂

∂ϕ
− β

4
r − 2α + 1

2r

)

J− = e−iϕ

(
− ∂

∂r
+

i

r

∂

∂ϕ
− β

4
r − 2α − 1

2r

)
(8)

J3 = L3 = −i
∂

∂ϕ
I = 1

satisfying the commutation relations

[L+, L−] = βI [L3, L±] = ±L± [L, I ] = 0 (9)

and

[J+, J−] = −βI [J3, J±] = ±J± [J, I ] = 0 (10)

respectively. The bases of the Hilbert space H represent the generators {L+, L−, L3, I } and
{J+, J−, J3, I } in two different ways, namely,

L+|n,m − 1〉 =
√

(n − m + 1)β|n,m〉
L−|n,m〉 =

√
(n − m + 1)β|n,m − 1〉 (11)

L3|n,m〉 = m|n,m〉 I |n,m〉 = |n,m〉
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and

J+|n − 1,m − 1〉 =
√

(n + α)β|n,m〉
J−|n,m〉 =

√
(n + α)β|n − 1,m − 1〉 (12)

J3|n,m〉 = m|n,m〉 I |n,m〉 = |n,m〉
as finite- and infinite-dimensional representations, respectively. There, labelling the oblique
lines with d = 1, 2, 3, . . . , we wrote the equation of the dth line as n = m + d − 1.
Then, defining two classes of Hilbert subspaces, Hn := span{|n,m〉}0�m�n and Hd :=
span{|n, n − d + 1〉}n�d−1, we concluded that

{
Hn

⋂
Hn′ = 0 for n �= n′,H = ⊕∞

n=0Hn

}
and{

Hd

⋂
Hd ′ = 0 for d �= d ′,H = ⊕∞

d=1Hd

}
. Moreover, upon referring to figure 1 of [7], one

can see that the number of quantum states lying on the nth vertical line is n + 1, while on the
dth oblique line there are an infinite number of them. In other words: dimHn = n + 1 and
dimHd = ∞, i.e. Hn and Hd constitute the finite- and infinite-dimensional representation
spaces of the Heisenberg Lie algebra h4 corresponding to the generators {L+, L−, L3, I } and
{J+, J−, J3, I }, respectively. Also, using the explicit forms of the generators L± and J±, we
conclude that the diagram given in figure 1 of [7] is commutative; that is,

[J+, L±] = [J−, L±] = 0. (13)

Furthermore, from equations (11) and (12), we conclude that L± : Hd → Hd∓1 and
J± : Hn → Hn±1. Note that the inner product (5) defined by the inner products of the
bases in the Hilbert space H induces two inner products in the Hilbert subspaces Hn and
Hd as 〈n,m|n,m′〉 = δmm′ with 0 � m,m′ � n and 〈n, n − d + 1|n′, n′ − d + 1〉 = δnn′

with n, n′ � d − 1, respectively. These orthonormality relations immediately give the
completeness relations in the Hilbert subspaces Hn and Hd as

∑n
m=0 |n,m〉〈n,m| = IHn

and
∑∞

n=d−1 |n, n − d + 1〉〈n, n − d + 1| = IHd
. The Casimir operators corresponding to the

set of generators {L+, L−, L3, I } and {J+, J−, J3, I }, i.e.

HL = 1

2

[
L+L− + βL3 − β

2

]
(14)

and

HJ = 1

2

[
J+J− − βJ3 +

β

2

]
(15)

satisfy the following eigenvalue equations:

HL|n,m〉 = β

2

(
n +

1

2

)
|n,m〉 0 � m � n (16)

and

HJ |n, n − d + 1〉 = β

2

(
d + α − 1

2

)
|n, n − d + 1〉 n � d − 1 (17)

on the Hilbert subspaces Hn and Hd , respectively. As mentioned in [7], the Casimir operators
HL and HJ contain the constant magnetic field β/2 in the negative and positive directions of
the z-axis with (n + 1)-fold and infinite-fold degeneracies, respectively.

2. Splitting of the Landau levels as representation subspaces of the Lie algebras
su(2) and su(1, 1)

Let us define the second- and first-order differential operators

M+ := 1

β
J+L+ M− := 1

β
J−L− M3 := 1

2β
(J+J− − L−L+). (18)
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Using the commutation relations of the Lie algebra h4 as (9) and (10) and also the commutation
relations (13), one can easily derive the commutation relations of the Lie algebra su(2) [13]
for the generators M+,M− and M3:

[M+,M−] = 2M3 [M3,M±] = ±M±. (19)

The following representation for the Lie algebra su(2) in the Hilbert space H can be
immediately found using the representations (11) and (12) of the Lie algebra h4:

M+|n − 1,m − 2〉 =
√

(n + α)(n − m + 1)|n,m〉
M−|n,m〉 =

√
(n + α)(n − m + 1)|n − 1,m − 2〉 (20)

M3|n,m〉 = 1
2 (m + α)|n,m〉.

Figure 1 of this paper shows decompositions of the Hilbert space H into distinct classes of the
Hilbert subspaces made in two different ways, which are also different from those in figure 1
of [7]. The oblique and the horizontal lines indicate these two types of decomposition of the
Hilbert space schematically. If we label the oblique lines with s, where s = 0, 1, 2, . . . , then
we can write their equations as m = 2n−s. Then we define the new finite-dimensional Hilbert
subspaces as Hs := span{|n, 2n− s〉}s+1−dimHs�n�s . In fact, the Hilbert subspace Hs involves
all the Landau levels lying on the sth oblique line. Note that the limitation 0 � m � n on the
Hilbert subspace Hs leads to the limitation s

2 � n � s. For s even and odd, i.e. s = 2k and
s = 2k + 1, we deduce that dimH2k = s − k + 1 = [

s
2 + 1

]
and dim H2k+1 = s − k = [

s
2 + 1

]
,

respectively. Here the symbol [ ] means the integer part. Therefore, for every arbitrary s we
have dimHs = [

s
2 + 1

]
. Now, it is clear that

{
Hs

⋂
Hs ′ = 0 for s �= s ′,H = ⊕∞

s=0Hs

}
. The

orthonormality and completeness relations in the Hilbert subspaces Hs are inherited from the
corresponding relations in the Hilbert space H. That is, equations (5) and (6) give

〈n, 2n − s|n′, 2n′ − s〉 = δnn′ n, n′ = s, s − 1, . . . , s + 1 −
[ s

2
+ 1

]
(21)

and
s∑

n=s+1−[ s
2 +1]

|n, 2n − s〉〈n, 2n − s| = IHs
. (22)

One may obtain a representation of the Lie algebra su(2) in the Hilbert subspace Hs using the
relations (20) as follows:

M+|n − 1, 2n − s − 2〉 =
√

(n + α)(n + s + 1)|n, 2n − s〉
M−|n, 2n − s〉 =

√
(n + α)(n + s + 1)|n − 1, 2n − s − 2〉 (23)

M3|n, 2n − s〉 = 1
2 (2n − s + α)|n, 2n − s〉.

The Casimir operator of the Lie algebra su(2),

HM := M+M− + M2
3 − M3 (24)

satisfies the following eigenvalue equations on the Hilbert subspaces Hs :

HM |n, 2n − s〉 = EM(s)|n, 2n − s〉 n = s, s − 1, . . . , s + 1 −
[ s

2
+ 1

]
(25)

where

EM(s) = s + α

2

( s + α

2
+ 1

)
. (26)

Therefore, the Hilbert subspace Hs as a representation space for the Lie algebra su(2) contains
an

[
s
2 + 1

]
-fold degeneracy. This means that all the Landau quantum states lying on the sth
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oblique line have the same spectrum for the Casimir operator of the Lie algebra su(2). We
can also consider the state |s, s〉 as the highest state, which is annihilated by the raising
operator M+:

M+|s, s〉 = 0. (27)

The solution of the differential equation (27) can be computed in the following form, in
agreement with the analytic solution (4):

|s, s〉 = (−1)s√
2π

√
βα+s+1

�(α + s + 1)
eisϕ

( r

2

) 2α+2s+1
2

e− β

8 r2
. (28)

With the help of the second equation of (23), an arbitrary state of the Hilbert subspace Hs

(the sth oblique line) can be calculated in an algebraic manner as follows:

|n, 2n − s〉 =
√

�(α + n + 1)�(n + s + 2)

�(α + s + 1)�(2s + 2)
Ms−n

− |s, s〉

n = s, s − 1, . . . , s + 1 −
[ s

2
+ 1

]
. (29)

Therefore, the Hilbert space H can be decomposed into the infinite direct sum of the finite-
dimensional Hilbert subspaces Hs , which represent the Lie algebra su(2) with

[
s
2 + 1

]
-fold

degeneracy.
Let us now define the new second-order differential operators

K+ := 1

β
J+L− K− := 1

β
J−L+ K3 := 1

2β
(J−J+ + L−L+). (30)

With the help of the commutation relations (9), (10) and (13), it is found that the generators
K+,K− and K3 satisfy the commutation relations of the Lie algebra su(1, 1) [13] as follows:

[K+,K−] = −2K3 [K3,K±] = ±K±. (31)

According to equations (11) and (12), the representation of the Lie algebra su(1, 1) in the
Hilbert space H is found to be of the following form:

K+|n − 1,m〉 =
√

(n + α)(n − m)|n,m〉
K−|n,m〉 =

√
(n + α)(n − m)|n − 1,m〉 (32)

K3|n,m〉 = 1
2 (2n − m + α + 1)|n,m〉.

We now construct a new class of the Hilbert subspaces which not only realize a representation of
the Lie algebra su(1, 1) but also split the Landau levels into an infinite direct sum of subspaces,
in which the binary intersections are empty. The horizontal lines are specified by the values
of m, where m = 0, 1, 2, . . . . This leads us to introduce the infinite-dimensional Hilbert
subspaces Hm := span{|n,m〉}n�m. At this stage one can easily see that

{
Hm

⋂
Hm′ = 0

for m �= m′,H = ⊕∞
m=0Hm

}
. It must therefore be noted that the relations (32) describe the

representation of the Lie algebra su(1, 1) in the Hilbert subspaces Hm. It has to be emphasized
that according to equations (20) and (32), the ladder operators of the Lie algebras su(2) and
su(1, 1) shift the infinite- and finite-dimensional Hilbert subspaces as M± : Hm → Hm±2 and
K± : Hs → Hs±2. Again the orthonormality and the completeness relations in the Hilbert
subspaces Hm are deduced from (5) and (6) to be

〈n,m|n′,m〉 = δnn′ n, n′ = m,m + 1,m + 2, . . . (33)

and
+∞∑
n=m

|n,m〉〈n,m| = IHm
. (34)
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The eigenvalue equations for the Casimir operator of the Lie algebra su(1, 1),

HK := K+K− − K2
3 + K3 (35)

using the representation equations (32), are calculated as follows:

HK |n,m〉 = EK(m)|n,m〉 n = m,m + 1,m + 2, . . . (36)

where

EK(m) = −m + α + 1

2

(
m + α + 1

2
− 1

)
. (37)

Thus, all the quantum states on a horizontal line have the same spectrum for the Casimir
operator of the Lie algebra su(1, 1) which means that the degeneracy of the representation
spaces Hm is infinite-fold. The lowest state in the Hilbert subspace Hm is |m,m〉, which is
annihilated by the lowering operator K−:

K−|m,m〉 = 0. (38)

The solution of (38) is just (28), provided that s is replaced by m. The arbitrary states belonging
to the Hilbert subspace Hm (the mth horizontal line) are calculated in the following form by
means of the first equation of (32):

|n,m〉 =
√

�(α + m + 1)

�(n − m + 1)�(n + α + 1)
Kn−m

+ |m,m〉 n = m,m + 1,m + 2, . . . . (39)

Consequently, the Hilbert space H splits into an infinite direct sum of the infinite-dimensional
Hilbert subspaces Hm which represent the Lie algebra su(1, 1) with infinite-fold degeneracy.

3. su(1, 1)-Barut–Girardello coherent states in the Hilbert subspaces Hm of the
Landau levels

Let us introduce the Barut–Girardello coherent states [12] in the Hilbert subspaces Hm as
eigenstates of the lowering generator K− of the Lie algebra su(1, 1):

K−|z〉m = z|z〉m (40)

in which z is an arbitrary complex variable (with the polar form z = r eiφ, 0 � r < ∞, 0 �
φ < 2π ). Using the second equation of (32), we can calculate the coherent states |z〉m as the
linear combinations of all the orthonormal basis states of the Hilbert subspace Hm:

|z〉m = |z| α+m
2√

Iα+m(2|z|)
+∞∑
n=m

zn−m|n,m〉√
�(n − m + 1)�(α + n + 1)

(41)

where Iα+m(2|z|) is the modified Bessel function of the first kind as follows [14]:

Iα+m(2|z|) =
+∞∑
n=0

|z|α+2n+m

�(n + 1)�(α + n + m + 1)
. (42)

Meanwhile, by means of the above-described degeneracy in equation (36), it is easy to see that
the coherent states of Hm, i.e. |z〉m, given in (41) satisfy the following eigenvalue equations:

HK |z〉m = EK(m)|z〉m. (43)

In order to complete the discussion as in references [1, 12], we introduce an appropriate
measure dσ(z) such that the property of resolution of the identity is realized for the coherent
states |z〉m in the Hilbert space Hm:∫

dσ(z)|z〉mm〈z| = IHm
. (44)
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Some calculation shows that on choosing

dσ(z) = 2

π
Iα+m(2r)Kα+m

2
(2r)r dr dφ (45)

using the completeness relation (34) of Hm, the resolution of the identity condition (44) is
realized. The function Kα+m

2
(2r) is the modified Bessel function of the second kind [14]:

Kα+m
2

(2r) = π

2 sin
(

(α+m)π

2

)(
I− α+m

2
(2r) − I α+m

2
(2r)

)
(46)

which satisfies the following integral relation:

4
∫ ∞

0
r2n+α−m+1Kα+m

2
(2r) dr = �(n − m + 1)�(n + α + 1). (47)

Also, the inner product of the coherent states |z〉m and |z′〉m′ belonging to the Hilbert subspaces
Hm and Hm′ is calculated as

m′ 〈z′|z〉m = δm′m

( |z′z|
z̄′z

) α+m
2 Iα+m(2

√
z̄′z)√

Iα+m(2|z′|)Iα+m(2|z|) . (48)

Relation (48) implies that not only are the coherent states of the different representation
subspaces of the Lie algebra su(1, 1) orthogonal, but also they are normalized to unity with
respect to the inner product (33) in the Hilbert subspace Hm: m〈z| z〉m = 1. Furthermore, one
can readily conclude that, according to the Mandel criterion, the weight distribution functions
of the coherent states |z〉m are of the Poissonian and sub-Poissonian types.
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